Introduction¶
Welcome to RaGraph's documentation! RaGraph is a library to create, manipulate, and analyze graphs consisting of nodes and edges. Nodes usually represent (hierarchies of) objects and edges the dependencies or relationships between them.
These graphs, or networks if you will, lend themselves well to applied analyses like clustering and sequencing, as well as analyses involving the calculation of various insightful metrics.
It's aim is to provide an easy-to-use and versatile library.
In this documentation you can find
- Tutorials for step-by-step educational content,
- How-to guides for a more use-case centric approach, the package's,
- Reference including source code
- Some Explanation and rationale behind the library,
- The Changelog outlining all changes following the https://keepachangelog.com conventions.
Installation instructions¶
RaGraph is installable via pip or your favorite Python dependency manager. If you want all the goods, get going with:
or for instance for Poetry:
For a development installation, clone the repository and do a poetry install -E all
.
Hello world!¶
Perhaps the most "Hello world!" thing to do with a Graph
is to make a single source Node
, a
target Node
and create an Edge
between them and put them in a Graph
. The snippet below uses a
very rudimentary ASCII-art representation of a Dependency Structure Matrix (DSM) of the Graph
where "the X marks the spot" of our Edge
.
This is also your first Dependency Structure Matrix (DSM) for you! You might know it as the
adjacency matrix of a graph. Each row and column in the matrix corresponds to the nodes. They are
both in identical order from the top-left to bottom-right. Imagine each node itself is one of the
■
-squares on the diagonal. The single Edge
is marked using an X
here. All of the incoming
edges towards a node are in it's row and at the column corresponding to the source. All outgoing
edges of a node are therefore in it's column. This is called the IR/FAD convention (Inputs in
Rows/Feedback Above Diagonal).
Congratulations! You'll see plenty more (way prettier!) DSM visualizations of graphs in our documentation.
Where to next? You might want a step-by-step start using the tutorials or a use case approach using the how-to guides.
License and contributions¶
For contribution instructions, head over to the open-source GitLab repository!
All code snippets in the tutorial and how-to guide sections of this documentation are free to use.
If you find any documentation worthwhile citing, please do so with a proper reference to our documentation!
RaGraph is licensed following a dual licensing model. In short, we want to provide anyone that wishes to use our published software under the GNU GPLv3 to do so freely and without any further limitation. The GNU GPLv3 is a strong copyleft license that promotes the distribution of free, open-source software. In that spirit, it requires dependent pieces of software to follow the same route. This might be too restrictive for some. To accommodate users with specific requirements regarding licenses, we offer a proprietary license. The terms can be discussed by reaching out to Ratio.